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SECTION I

INTRODUCTION

In a recent study dealing with reliability-based criteria
1*

for design, inspection and fleet management of USAF aircraft

an effort has been made to incorporate into the reliability

evaluation scheme the direct or indirect effect of material

selection, geometrical configuration (in terms of either fail

safe or slow crack growth model), mission spectra, inspection

procedures, proof load test, design practice and analysis method.

This study has not only provided an adequate analytical frame-

work for the current effort toward implementation of reliability-

based criteria but also identified a number of difficulties

which should be alleviated, if not totally removed, by means

of a continued study before reliability-based criteria can be

accepted and implemented with sufficient engineering confidence.

Among the items on which the study recommended a continued

investigation is the scatter factor which has been a part of

the conventional design procedure and at the same time is

closely related to the reliability of aircraft structures as

2recently demonstrated by Freudenthal

The general framework for the development of reliability-

based criteria for aircraft must emerge as a compromise among

the applicability of rigorous analytical procedures, the

* Numerals indicate references listed on p. 72,
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availability of pertinent data and the requirements of ready

implementation of such criteria. These requirements therefore

should provide a format that makes it reasonably simple to

translate design procedures and design-decision processes

currently in use in the U. S. Air Force and in the airframe

industry into formally not too dissimilar procedures and

processes which reflect, however, the new probabilistic con-

cept of engineering reality. The scatter factor indeed has

such dual characteristics. Also, the scatter factor, being

probably the only quantity based on the full-scale test, plays

a crucial role in the certification and reliability demonstra-

tion procedures.

In the study performed here, introduced is a definition of

the scatter factor that is rational and at the same time can

directly be related to the reality of aircraft design and cer-

tification as well as of the full-scale and also coupon fatigue

tests of structural elements or components. Specifically, the

scatter factor will be defined as the ratio of the MLE (maximum

likelihood estimate) of the scale parameter of the two-parameter

Weibull distribution assumedly describing the life distribution

of structural elements or components, to the "time to first

failure" among a fleet of nominally identical elements or

components subjected also to nominally identical operating con-

ditions. Freudenthal has used in Ref. 2 the same definition of

the scatter factor, however, under much simplified conditions:

He assumes that the shape parameter of the Weibull distribution

-2-



is known, This assumption is mathematically highly expedient

since it permits the derivation of the distribution of the

scatter factor in closed form and independent of the unknown

scale parameter as demonstrated in Ref. 2. Unfortunately,

however, such an assumption is inconsistent with reality where

the Weibull shape parameter easily ranges from 2.0 to 10.0,

reflecting the fact that structural elements or components

suffer from a variety of sources of randomness in fatigue

strength; not only from the probabilistic variation of the

material property but also from the statistical variation in

workmanship associated with, for example, drilling rivet holes

in the process of airframe fabrications.

The mathematical difficulty multiplies when the Weibull

shape and scale parameters are both assumed to be unknown.

The proposed Monte Carlo simulation approach can overcome the

difficulty and produce results amenable to practical applica-

tions.

-3-



SECTION II

CRITICAL REVIEW OF FREUDENTHAL'S SCATTER FACTOR

2

Recently, Freudenthal published a paper proposing a

statistical interpretation of the scatter factor to be used

in the reliability assessment of aircraft structures. The

essence of his paper is briefly described below.

Consider a two-parameter Weibull distribution for the

life t of a structure (or a structural component):

t a
F 0 (t) = 1 - exp[- (-) ] (i)

where it is assumed that the shape parameter a is known while

the scale parameter 8 is unknown. The maximum likelihood

estimate (MLE) of B is given by

n 1/a
St 0i] (2)

n i=l

with t 0 1 , t 0 2. . . . . . . , ton indicating a sample of size n taken

from the distribution given by Eq. 1.

Let t1 represent the time to first failure (minimum life)

in a fleet of m aircraft (fleet size = m). Then, the distri-

bution function of t1 is given by

t1 c

Fl(tI) = 1 - exp[ - ( ) ] (3)

-4-



where

1 = 8/mI/ (4)

Freudenthal defines the scatter factor S as

S =/tI (5)

and shows that the distribution of S is given by

s5 n
FS(s) = [ s (6)(rn/n) +sCX

In deriving Eq. 6, the fact has been used that 2n(ý/8)a is

distributed as X2 with 2n degrees of freedom and hence the
A

density function of 8 is given by

n
n a cn-i af 2() -. - •( ) exp[-n(U/ý) ] (7)

IF(n)

It then follows that the density function of z = / is

n
n an-i

g (z) = - -a-z exp[-nz ] (8)
r (n)

Consider, at this point, the following transformations:

a 1n a~

and

W = (tl/) a (10)

Note that (t /O ) ais exponentially distributed with unit, mean

-5-



value (indeed, Eq. 7 follows from this fact) and that (tl/m)•

is also exponentially distributed but with mean value equal to

1/m. Therefore, it is easy to generate sample pairs of v and

w by Monte Carlo techniques and at the same time compute the

sample values of the ratio v/w therefrom. This ratio can be

written from Eqs. 9 and 10 as

v/w = (0/t1 )a (11)

and hence

(v/w) (12)

Since a has been assumed to be known, sample values of

scatter factor S can be generated by means of Eq. 12. Indeed,

the use of such a Monte Carlo simulation with the size of the

(simulated) sample as large as 999 has resulted in a satisfac-

tory result in producing the distribution of scatter factor S

for the case of m = 3, n = 1 and a = 4.0 as shown in Fig. 1.

Although the agreement just observed between the simula-

tion and the theory is for a particular set of parameter values,

i.e., m = 3, n = 1, a = 4.0, it is expected that the sample size

of the order of magnitude of 1,000 will be sufficiently large

for the type of simulations to be performed later in which no

theoretical distribution is available for comparison purposes.

Define now t as the service life specified for the fleet

or equivalently as the specified minimum life in the fleet.

Define also the fleet reliability R as

- 6 -



R = P{tI > tI} C13)

which indicates the probability that the time to first failure

in the fleet will be larger than or equal to the specified value.

In Ref. 2, however, Freudenthal implied that the probability
A ,

R' = P{S < 80/tI} (14)

should be used for the fleet reliability, where 10 now indicates

a realization of random variable 8. With the aid of Eqs. 3 and

4, the fleet reliability can be written as

R = exp[ - m(tl/')•] (15)

while R' in Eq. 14, with the aid of Eq. 6, becomes

(RI0/tl) n

in/n + 0A1

Obviously R and R' are not identical. The difference can be

more clearly demonstrated by rewriting Eqs. 13 and 14 respec-

tively as

R ff f 1 (t1 )f2 (8)dt 1 d (17)
D 1UD2D1U2

R= ff f(tl)f 2 (.)dtld^ (18)
D1 UD3

where the domains of integration D1 UD2 (D1 union D2 ) and D1 UD3

-7.-



are shown in Fig, 2, The domain D U D3 in Eq. 18 can be

obtained by adding D3 to and subtracting D2 from the correct

domain of integration D1U D 2* Note that D3 represents a con-

servative addition and D2 an unconservative subtraction.

To demonstrate that R' may be used as an approximation to

R, consider the expected value E[R'] of R';

COA 00

E[R'] = f R'f 2 ( B)dB = f R'g 2 (z)dz (19)
0 0

where R' and f 2 (B) in the integrand of the second member are

to be replaced by the right hand sides of Eqs. 16 and 7 respec-
,

tively. The integration then depends on tl, B and m. These

quantities are related, however, in the following fashion

through Eq. 15.

(t*/B)c' = -(Zn R)/m (20)

* ^

With the aid of Eq. 20, t1 and m in Eq. 16 (with 0 being re-

placed by B) are eliminated and furthermore with the aid of the
A

definition z = B/B, Eq. 16 becomes

(B/B)c z
RI = I In = [ ]n (21)

(B/B) - (kn R)/n z - (kn R)/n

Substituting Eqs. 8 and 21 into the third member of Eq.

19, one obtains

-8-



Snz a n
E[R________ in c•n-i

Emil f a-I - z expl-nz ]dz (22)
0 nzc - Yn R r Cn)

Similarly,

nz 2n an n cn-i
E[CR') 2 ] = f a e R z exp[-nz ]dz (23)

0 nz -n R r(n)

The standard deviation aR' of R' can easily be obtained from

Eqs. 22 and 23.

The integrals in Eqs. 22 and 23, now independent of m,

are evaluated numerically for a = 0.5, 1.0, 2.0, .... 1, 0.0,

R = 0.5, 0.6r .... , 0.9, 0.99, 0.999, 0.9999 and n = 1, 2,

10. The ratios E[R']/R for these values of R are then plotted

as functions of a in Figs. 3 - 12 for n = 1, 2, .... 1, 0, res-

pectively. Also, the coefficients of variation VR' = GR,/E[RI]

of R' are plotted as functions of a for the same values of R

and n in Figs. 13 - 22. One observes from these results the

following general trend.

1) As a increases, so does the ratio E[R']/R. However,

except for a sharp increase observed between a = 0.5

and 1.0, the rate of increase is small. In fact, the

ratio is almost constant for those values of a > 2.0

which include a practical range of a between 2.0 and

5.0.

2) For the same value of R, the ratio is closer to unity

for a larger value of n.

3) The ratio is not necessarily larger for a larger value

-9-



of R, although numerical results indicate that E[R']

monotonically increases as a function of R with all

other parameters kept constant.

4) As a increases, the coefficient of variation VR, of

R' decreases. Except for a sharp decrease observed

between a = 0.5 and 2.0, however, the rate of decrease

is small. The coefficient is almost constant for

c > 2.0.

5) For the same value of R, the coefficients are smaller

when n is larger.

6) The coefficients are smaller for a larger value of R.

For example, the ratio E[R']/R is nearly equal to 0.950

for R = 0.5 and n = 1 (Fig. 3). This may give an impression

that the approximation is acceptable. However, the fact that

the corresponding coefficient of variation VRI is as large as

0.50 (Fig. 13), proves that-the impression is unsubstantiated.

As n increases to 5 and to 10 (while R = 0.5 is kept constant),

the ratio E[R']/R increases to 0.970 and to 0.982 (Figs. 7 and

12) and at the same time, the coefficient VR, decreases to 0.30

and to 0.22 respectively (Figs. 17 and 22), thus making the

approximation more reasonable. For R = 0.9, however, the appro-

ximation appears to be reasonable since then the ratios are

0.88, 0.98, 0.99 and the coefficients are 0.27, 0.07 and 0.05

respectively for n = 1, 5, and 10. Tables 1 - 3 summarize such

observations for selected values of R, a and n. The last column

in Tables 1 - 3 lists the value of Freudenthal's scatter factor

corresponding to E[R'] for different values of m.

- 10 -



SECTION III

STATISTICAL SCATTER FACTOR WITH UNKNOWN

SHAPE AND SCALE PARAMETERS

It is well known that, when the shape and scale parameters

of the two parameter Weibull distribution given in Eq. 1 are

both unknown, the MLE a of a and MLE of B are obtained from

the following simultaneous equations:

n V ^
n = [ (t/0i/0)0 (24)

A An a
n = [(t 0 i/8)e - 1]Rn(t0i /0) (25)

i=l

where, as before, t 0 1 , t 0 2. . . . . , tOn indicate a sample of size

n taken from the Weibull distribution. In this case, the statis-

tical scatter factor Q is introduced in the following form as a

natural extension of S given in Eq. 5.

Q = /tI (26)

Defining y(i), u and v as0

y(i) = (t i/Y) (27)

u =// (28)

and

v= ( a/•) (29)

one can rewrite Eqs. 24 and 25 respectively in the following forms,

- 11 -



n i /u
v 0  y[ W U(i)/n] C3 0)

i~l

n n

S(u) = [ yU (i)zn y(i)/ ? yU(i) - 1/u -
i=l i=l

n
S9n y(i)/n = 0 (31)

i=l

Since y(i) is exponentially distributed with mean value equal

to unity, the joint distribution of u and v0 can be obtained

through Eqs. 30 and 31 by the Monte Carlo simulation technique.

All that one is required to do is to generate y(i) (i = 1, 2, ..

... , n) , use them in Eqs. 30 and 31, solve these two equations for

u and v 0 , and repeat the process N times. This will produce

a simulated sample of u and v 0 pairs of size N. Independently

of the simulation of u and v 0 , generate again a (simulated)

sample of w (Eq. 10) of size N.

By means of the Monte Carlo simulation technique just
3

described, Whittaker and Besuner constructed the empirical

distribution functions of u* and v* defined as
0

u* = 1/u (32)

A

v* = v 0 U a(/) (.33)

These empirical distributions are simulated, based on samples

of size 1,999, and are shown in Figs. 23 and 24 respectively.

The comparison of current simulation results with those in Ref.

3 indicates that the accuracy of the current simulation is

- 12 -



generally comparable with that of Ref. 3.

Since

Q0 = 0 /t1 )0 = (/W)/Ct/M = V0 /w (34)

it follows that

Q, = Q = (v 0 /w) u (35)

The last equation indicates that the distribution of Q* can be

constructed with the aid of u, v0 and w generated above. For the

ease of application, however, the distribution of the logarithm

Z of Q*,

Z = log1 0 Q* = u log1 0 (v 0 /W) (36)

is constructed and plotted in Figs. 25 - 29 (respectively for

m = 1, 3 , 5 ,25,and 100), where solid circles indicate the values

of the empirical distribution function of Z based on samples of

size 1,999. Solid curves are drawn through these circles by

interpolation. Similarly, Fig. 30 plots the empirical distri-

bution of Z for various values of m when n = 3.

Having thus established the empirical distribution of Z,

define the probability R" as

R" = P{Q < ý/tI} = P{Qa < (8/tl)a} (37)

-. 13 -



This probability R" is similar to Freudenthal's fleet relia-

bility R' defined by Eq. 14 and can be expressed, with the aid

of Eqs. 35 - 37, as

A

R" = P{Z < logl 0(B/tl) } (38)

, 1

In Eqs. 37 and 38, t1 is the specified minimum life, and a

and • represent realizations of the maximum likelihood estimates

of a and ý based on a sample of size n taken from Eq. 1; t01,

t02, . . . .. , tOn* The empirical distribution of Z, such as is

established numerically and graphically, for example, in Fig.

25, can thus be used to find the probability R" given a sample

of t.

Since one can show with the aid of Eq. 20 that

A mv
cx = 0,u (39)

2,n (l/R)

Eq. 38 can be written as

my0  Fmv1 0
R" = P[Z < u logl{_ }0 = [U logl0{ } (40)

Z1 n (l/R) £1n(l/R)

where FZ['] is the (cumulative) distribution function of Z.

In the computation that follows, empirical distributions such

as those obtained in Figs. 25 - 30 are used in place of FZ[.].
k

The expected values of (R") , where k is a positive integer,

can then be evaluated as

- .14 -



k mv 0E[(R")k] = f00 F [u lgl0{ --- I f uv u'v0)dudv0 (41)
0 0 9,n (1/R) 0

Obviously, the expected value of R" is obtained as E[R"] and

the variance of R" as Var[R"] = E[(R") 2 ] - E 2 [R"]. In Eq. 41,

fuv0(-, -) is the joint density function of u and v0 , which

can be evaluated empirically by making use of Eqs. 30 and 31.

In fact, the random variables u* = 1/u and v* = v0 U considered

before have joint distribution resulting from the same under-

lying dependence as for u and v 0 and the empirical distributions

shown in Figs. 23 and 24 are their respective marginal distri-

bution functions. The (two-dimensional) histograms of u and v0

are shown in Figs. 31 - 35 for the cases n = 2, 3, 5, 10 and

20, each on the basis of a simulated sample of N = 1,999 pairs

of u and v 0 . The empirical density can then be obtained by

dividing the frequency in the histogram by 1,999. The sum of

the frequency values in each of these histograms may not add

up to 1,999 because some the (simulated) observations fell out-

side of the domain of u and v considered here; u = 0 - 20 and

v0 = 0 - 4.

Making use of the empirical distribution of Z and the

empirical density of u and v0 , one can evaluate Eq. 41 for

k = 1 and 2 and hence find the mean value and the coefficient

of variation VR,, of R". The results of computation are shown

in Figs. 36 - 40 with R as abscissa for the cases n = 2, 3,

5, 10 and 20, and also in Figs. 41 - 45 with E[R"] as abscissa.

Similar to Tables 1 - 3, Tables 4 - 8 summarize these results

-15-



for selected values of R, m and n. In Tables 4 -8, however,

the values of Q* corresponding to the fleet reliability R =

E[R"] are listed in place of S.

The following observations can be made on the basis of

these results.

1) The ratio E[R"]/R increases as n and R increase but

decreases as m increases. For the ranges of n, R and

m examined here, the smallest (worst) is 0.655 (n = 2,

R = 0.95 and m = 100) while the largest (best) is

0.995 (n = 20, R = 0.999 and m = 1). This indicates

that E[R"] and R are essentially of the same order of

magnitude in these ranges of n, R and m.

2) The coefficient of variation VR", decreases as n and R

increase while it increases as m increases.

3) On the basis of the observations (1) and (2) above,

one can determine for what combinations of n, R and

m the fleet reliability R" based on the scatter factor

(computed from Eq. 37) can be used as an approximation

in place of the (true) fleet reliability R. For

example, if one considers a coefficient of variation

VR,, less than or equal to 0.20 as acceptable, the

fleet size m must be less than or equal to 5 at the

reliability level of 0.99 for R" to be acceptable if

n = 2 (see Fig. 36) whereas R" may be used in place

of R even with the fleet size as large as m = 100 at

the same level of fleet reliability of 0.99 if n = 20

(see Fig. 40).

- 16 -



4) Figs. 41 - 45 are particularly useful in practical

applications. Realizations a0 and B0 of a and

respectively on a sample of size n can be used in Eq.

38 to obtain a realization of R" of R". Actually, this
0

is done by reading the value of R" from Figs. 25 - 30.

Diagrams showing VR,, as a function of E[R"] in Figs.

41 - 45 then indicate whether R" just obtained can be

used for E[R"] depending on the fleet size m and the

sample size n: If VR,, corresponding to E[R"] = R0 is

small (say, less than 0.20) for m and n under consider-

ation, E[R"] may indeed be considered equal to R0 in

approximation. Using this value of E[R"] in the diagrams

showing E[R"]/R as a function of E[R"] in Figs. 41 - 45,

we can estimate the corresponding value of R. As this

process of evaluating R suggests, Figs. 41 - 45 impli-

citly indicate for what combinations of m, n and the

specified value of VR,, the probability R0 can be used

as an approximation to R. If the value of VR,, corres-

ponding to R0 (replacing E[R"] in Figs. 41 - 45) exceeds

the specified value of VR", for a particular set of m and

n, then one or any combination of the following should

be implemented to make R" a better approximation to R:0

(a) The fleet size m to be considered should be reduced.
This requires a reevaluation of R". (b) The sample size

0

n should be increased. This requires testing of an addi-

tional number of structural components and a reevaluation

of R" based on that, and (c) the specified minimum life

tj should be reduced. This requires a reevaluation of R"

- 17 -



SECTION IV

CONCLUSION

The concept of the statistical scatter factor has been

applied to the case where the parent distribution of the fatigue

life of aircraft or their components is a two-parameter Weibull

with both shape and scale parameters being unknown. Procedures

have been established to evaluate the scatter factor in its

extended form using the maximum likelihood estimates of the

parameters. The fleet reliability can then be estimated on the

basis of the scatter factor of extended form thus evaluated.

The effect of the sample size to be used in the fatigue test,

of the fleet size and of the reliability level on the accuracy

of such estimation has also been discussed.

- 18 -
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 13 3 2 0 0 1 0 0 0 0 0 0 0 0 0
2 42 66 59 40 32 16 21 8 5 1 4 3 0 0 0 0
3 31 55 61 43 41 36 24 13 9 11 4 4 2 2 0 1
4 15 31 48 27 24 25 16 15 5 7 4 5 0 1 2 2
5 19 25 30 20 16 14 14 16 10 5 1 2 0 1 1 1
6 6 14 18 13 14 14 10 8 5 5 1 4 1 2 1 2
7 9 17 24 19 9 6 7 8 4 3 2 0 1 1 1 0
8 7 16 11 14 14 6 2 4 2 3 2 1 0 0 0 0
9 0 10 7 12 8 10 5 4 1 3 1 0 0 0 0 0

10 5 7 13 7 6 3 5 9 4 2 0 2 0 0 0 0
11 2 8 15 3 6 7 6 2 1 0 0 2 0 0 0 0
12 3 6 4 4 7 6 2 2 3 0 1 0 0 0 0 0
13 2 7 6 5 4 2 0 1 1 1 0 0 1 0 0 0
14 1 4 7 6 3 2 1 2 4 0 3 0 0 1 0 0
15 2 6 2 5 1 2 2 1 0 0 1 1 0 0 0 0
16 2 5 1 4 1 3 1 1 1 1 0 0 0 0 0 0
17 2 1 3 2 1 1 1 0 1 0 0 0 2 0 0 0
18 2 3 3 3 1 1 0 0 0 0 0 0 0 0 0 0
19 1 2 4 2 1 1 1 1 2 0 1 1 0 0 0 0
20 0 0 1 1 1 3 0 0 0 1 0 0 0 0 0 0
21 1 2 3 2 3 3 0 1 0 0 0 0 0 0 0 0
22 0 2 0 0 0 2 2 1 0 0 0 1 0 0 0 0
23 2 1 2 2 2 0 0 0 1 0 0 0 0 0 0 0
24 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0
25 1 2 2 5 3 1 4 1 0 0 0 0 0 0 0 0
26 1 2 0 0 0 2 1 0 0 0 1 0 0 0 0 0
27 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
28 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
29 1 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0
30 2 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0
31 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0
32 1 1 2 0 1 0 0 2 0 0 0 0 0 0 0 0
33 0 1 1 1 0 2 0 1 0 0 0 0 0 0 0 0
34 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0
35 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
36 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
37 0 3 1 0 0 0 0 0 0 0 0 1 0 0 0 0
38 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0
39 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes: For v 0 , Interval 1 = 0 - 0.25, Interval 2 = 0.25 - 0.50, etc.
For u, Interval 1 = 0 - 0.50, Interval 2 = 0.50 - 1.00, etc.

Fig. 31. Two-dimensional frequency of u and v 0 (n=2)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 6 3 ! 1 1 0 0 0 0 0 0 0 0 0 0
2 30 104 89 82 59 48 19 16 5 4 2 0 2 1 0 0
3 22 64 96 102 90 61 44 17 17 14 4 0 2 2 1 0
4 11 46 68 54 57 33 33 21 10 11 6 3 1 0 1 0
5 5 25 21 29 34 18 14 12 3 6 3 0 1 0 0 0
6 5 11 20 9 22 12 11 8 4 3 1 1 1 0 1 1
7 3 13 27 14 12 4 13 5 4 1 0 0 0 0 0 0
8 3 8 11 12 5 8 3 3 1 3 1 0 1 0 0 0
9 1 4 10 10 6 3 3 2 2 0 0 1 0 0 0 0

10 2 11 3 4 8 1 1 0 1 0 0 0 0 0 0 0
11 1 1 1 3 3 3 1 1 0 2 0 0 0 0 0 0
12 0 1 2 5 3 2 2 1 0 0 0 0 0 0 0 0
13 1 2 3 3 1 2 1 0 1 0 1 0 0 0 0 0
14 0 1 2 2 3 1 1 0 0 0 0 0 0 1 0 0
15 0 0 2 2 1 0 1 0 0 0 0 0 0 0 0 0
16 0 0 1 2 1 0 0 1 0 0 0 0 0 0 0 0
17 0 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0
18 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
19 0 0 1 0 2 1 0 0 0 0 0 1 0 0 0 0
20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
22 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
24 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
25 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
26 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
28 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0
29 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
33 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Notes: For v 0 , Interval 1 = 0 - 0.25, Interval 2 = 0.25 - 0.50, etc.
For u, Interval 1 = 0 - 0.50, Interval 2 = 0.50 - 1.00, etc.

Fig. 32. Two-dimensional frequency of u and v 0 (n=3)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 12 74 136 142 111 48 32 10 3 0 2 0 0 0 0 0
3 5 50 156 180 158 95 66 31 11 9 4 3 0 1 1 0
4 4 18 61 61 72 52 38 25 10 9 3 1 2 0 0 0
5 1 7 26 29 36 23 10 11 1 2 2 1 0 0 0 0
6 1 4 11 14 15 8 10 5 2 0 1 0 0 0 0 0
7 0 3 4 4 8 3 2 4 0 2 0 0 0 0 0 0
8 0 2 2 9 4 1 1 1 0 0 0 0 0 0 0 0
9 0 1 1 2 1 5 2 0 0 0 0 0 0 0 0 0

10 0 2 0 0 0 1 2 1 0 0 0 0 0 0 0 0
11 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes: for v0, Interval 1 = 0 - 0.25, Interval 2 = 0.25 - 0.50, etc.
for u, Interval 1 = 0 - 0.50, Interval 2 = 0.50 - 1.00, etc.

Fig. 33. Two-dimensional frequency of u and v0 (n=5)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 35 186 238 148 68 13 1 2 1 0 0 0 0 0 0
3 2 28 146 318 260 161 68 22 6 3 0 1 0 0 0 0
4 0 3 30 69 57 45 28 11 1 0 0 0 0 0 0 0
5 0 0 4 11 6 9 2 1 1 1 0 0 0 0 0 0
6 0 0 0 4 2 3 0 1 0 0 0 0 0 0 0 0
7 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes: for v 0 , Interval 1 = 0 - 0.25, Interval 2 = 0.25 - 0.50, etc.
for u , Interval 1 = 0 - 0.50, Interval 2 = 0.50 - 1.00, etc.

Fig. 34, Two-dimensional frequency of u and v 0 (n=10)
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u0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 3 139 331 195 50 14 0 0 0 0 0 0 0 0 0
3 0 4 103 435 447 170 28 8 1 0 0 0 0 0 0 0
4 0 0 8 16 23 18 4 1 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes: for v 0 , Interval 1 = 0 - 0.25, Interval 2 = 0.25 - 0.50, etc.
for u, Interval 1 = 0 - 0.50, Interval 2 = 0.50 - 1.00, etc.

Fig. 35, Two-dimensional frequency for u and v 0 (n=20)
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Table 1

Values of E[R'], E[P']/R, VRi and Scatter Factors for

n= 1

S
R a E[R'] E[R'1]/I VR, m=l m=5 m=25

2 0.475 0.950 0.488 0.951 2.13 4.76
0.5 3 0.475 0.950 0.488 0.967 1.65 2.83

4 0.475 0.950 0.488 0.975 1.46 2.18
5 0.475 0.950 0.488 0.980 1.35 1.87

2 0.792 0.880 0.253 1.95 4.36 9.76
09 3 0.792 0.880 0.253 1.56 2.67 4.57

4 0.792 0.880 0.253 1.40 2.09 3.12
5 0.792 0.880 0.253 1.31 1.80 2.49

2 0.959 0.969 0.0931 4.84 L0.8 24.2
0.99 3 0.959 0.969 0.0930 2.86 4.89 8.37

4 0.959 0.969 0.0930 2.20 3.29 4.92
5 0.959 0.969 0.0930 1.88 2.59 3.58
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Table 2

Values of E[R'], E[R']/R, VR' and Scatter Factors for

n= 5

S
R a E[R'] E[R']/R VR, m=l m=5 m=25

2 0.485 0.970 0.296 1.13 2.53 5.67
0.5 3 0.485 0.970 0.296 1.09 1.86 3.18

4 0.485 0.970 0.296 1.06 1.59 2.38
5 0.485 0.970 0.296 1.05 1.45 2.00

2 0.881 0.979 0.0661 2.79 6.23 L3.9
0.9 3 0.881 0.979 0.0661 1.98 3.39 5.79

4 0.881 0.979 0.0661 1.67 2.50 3.73
5 0.881 0.979 0.0661 1.51 2.08 2.87

2 0.988 0.998 0.00721 8.93 20.0 44.7
0.99 3 0.988 0.998 0.00717 4.31 7.36 L2.60

4 0.988 0.998 0.00717 2.99 4.47 6.68
5 0.988 0.998 0.00717 2.40 3.31 4.57
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Table 3

Values of E[R'], E[R']/R , VR, and Scatter Factors for

n = 10

S

R a E[R'] E[R']/R VR, m=l m=5 m=25

2 0.491 0.982 0.216 1.16 2.60 5.82
0.5 3 0.491 0.982 0.216 1.11 1.89 3.24

4 0.491 0.982 0.216 1.08 1.61 2.41
5 0.491 0.982 0.216 1.06 1.47 2.02

2 0.891 0.990 0.0396 2.93 6.56 14.7

0.9 3 0.891 0.990 0.0396 2.05 3.50 5.99
4 0.891 0.990 0.0396 1.71 2.56 3.83
5 0.891 0.990 0.0396 1.54 2.12 2.93

2 0.989 0.999 0.00413 9.47 21.2 47.3
0.99 3 0.989 0.999 0.00406 4.47 7.65 13.1

4 0.989 0.999 0.00407 3.08 4.60 6.88
5 0.989 0.999 0.00418 2.46 3.39 4.68
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Table 4

Values of E[R"], E[R"]/R, VR,, and Q* for n = 2.

R m Ei[R"1 E[R"]/R VR", Q*

1 0.789 0.876 0.184 5.46 x 102
3 0.720 0.799 0.262 6.08 x 103

0.9 5 0.690 0.767 0.300 1.90 x 104
25 0.624 0.693 0.392 7.72 x 10 6

100 0.594 0.660 0.435 2-.07 x 10

2
1 0.835 0.879 0.144 2.07 x 103
3 0.760 0.800 0.223 1.83 x 103

0.95 5 0.730 0.768 0.260 5.73 x 105
25 0.657 0.691 0.353 2.54 x 106

100 0.622 0.655 0.399 8.96 x 10
3

1 0.888 0.897 0.103 4.20 x 104
3 0.821 0.829 0.169 3.35 x 104

0.99 5 0.791 0.799 0.201 8.49 x 106
25 0.716 0.723 0.286 2.98 x 107

100 0.675 0.681 0.335 7.81 w 10

1 0.925 0.926 0.075 2.00 x 10'
3 0.869 0.870 0.125 1.71 x 106

0.999 5 0.843 0.844 0.152 4.55 x 106
25 0.772 0.773 0.228 1.16 x 10'

100 0.729 0.730 0.275 2.98 x 101
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Table 5

Values of E[R"], E[R"]/R, V and Q* for n = 3.

R m E[R"] E[R"]/R VR, Q*

1 0.817 0.908 0.162 1.68 x 10
3 0.756 0.840 0.230 7.71 x 10

0.9 5 0.728 0.809 0.265 1.62 x 102
25 0.661 0.735 0.354 1.50 x 10O

100 0.626 0.696 0.402 1.09 x 104

1 0.868 0.914 0.120 3.88 x 10
3 0.808 0.850 0.185 1.79 x 102

0.95 5 0.780 0.820 0.218 3.35 x 102
25 0.707 0.744 0.305 3.55 x 10'

100 0.666 0.702 0.357 2.29 x 104

1 0.928 0.937 0.074 2.53 x 102

3 0.880 0.888 0.121 1.02 x 103

0.99 5 0.854 0.863 0.149 1.97 x 10'
25 0.785 0.793 0.222 2.31 x 104

100 0.738 0.746 0.277 1.68 x 105

1 0.964 0.965 0.047 4.96 x 10'
3 0.930 0.931 0.077 1.59 x 104

0.999 5 0.911 0.912 0.097 2.78 x 104

25 0.854 0.855 0.156 2.29 x l05

100 0.809 0.810 0.202 2.31 x 106
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Table 6

Values of E[R"], E[R"]/R. VR,, and Q* for n = 5

R m E[R"] E[R"]/R VR, Q*

1 0.844 0.937 0.126 1.31 x 10
3 0.801 0.890 0.183 4.51 x 10

0.9 5 0.777 0.863 0.217 7.45 x 10
25 0.710 0.789 0.313 4.61 x 102

100 0.669 0.743 0.370 2.76 x 10'

1 0.895 0.942 0.092 2.62 x -0
3 0.857 0.902 0.136 8.59 x 10

0.95 5 0.835 0.879 0.165 1.44 x 102
25 0.766 0.806 0.256 8.74 x 102

100 0.721 0.759 0.316 4.86 x 10'

1 0.955 0.964 0.046 1.33 x 102
3 0.927 0.937 0.077 3.62 x 102

0.99 5 0.912 0.922 0.095 7.10 x 102
25 0.856 0.865 0.160 4.25 x 103

100 0.808 0.816 0.220 1.96 x 104

1 0.983 0.984 0.020 1.30 x 10'
3 0.970 0.971 0.036 3.92 x 10'

0.999 5 0.960 0.961 0.048 8.02 x 10'
25 0.924 0.925 0.088 3.63 x 104

100 0.887 0.888 0.130 1.66 x 10'
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Table 7

Values of E[R"], E[R"]/R, VR,, and Q* for n = 10.

R m E[R"] E[R"]/R VRII Q*

1 0.867 0.963 0.096 9.52
3 0.836 0.928 0.142 2.77 x 10

0.9 5 0.819 0.910 0.166 4.73 x 10
25 0.762 0.847 0.258 2.34 x 102

100 0.718 0.798 0.334 9.05 x 102

1 0.920 0.968 0.067 1.68 x 10
3 0.892 0.939 0.106 5.26 x 10

0.95 5 0.877 0.923 0.125 8.83 x 10
25 0.823 0.867 0'.196 4.35 x 102

100 0.778 0.819 0.264 1.70 x l0'

1 0.973 0.983 0.026 9.78 x 10
3 0.958 0.968 0.045 2.25 x 102

0.99 5 0.949 0.959 0.057 2.96 x 102
25 0.914 0.923 0.102 1.58 x 10'

100 0.875 0.884 0.154 6.67 x 103

1 0.993 0.994 0.008 4.98 x 102
3 0.988 0.989 0.014 1.34 x 10'

0.999 5 0.985 0.986 0.018 2.19 x 10'
25 0.968 0.969 0.040 8.89 x 103

100 0.948 0.949 0.065 3.86 x 10'
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Table 8

Values of E[R"], E[R"]/R, VR,, and Q* for n = 20.

R m E [R"] E![R"]/R VR, Q*

1 0.875 0.972 0.069 9.17
3 0.856 0.951 0.108 2.58 x 10

0.9 5 0.842 0.935 0.134 4.05 x 10
25 0.786 0.873 0.233 1.92 x 102

100 0.739 0.822 0.324 7.28 x 102

1 0.921 0.970 0.051 1.87 x 10
3 0.906 0.954 0.075 5.19 x 10

0.95 5 0.897 0.945 0.090 7.30 x 10
25 0.856 0.901 0.155 3.20 x 102

100 0.810 0.853 0.230 1.12 x 10i

1 0.974 0.984 0.025 6.71 x 10
3 0.967 0.976 0.035 1.77 x 102

0.99 5 0.961 0.971 0.042 2.84 x 102
25 0.940 0.94.9 0.070 1.08 x 10,

100 0.912 0.921 0.107 3.S8 x 10'

1 0.994 0.995 0.007 6.62 x 102
3 0.991 0.992 0.011 2.27 x 10'

0.999 5 0.989 0.990 0.013 2.39 x 10'
25 0.981 0.982 0.022 7.27 x 10'

100 0.971 0.972 0.035 2.81 x 104
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